kinetics

Concentration and reaction rates

Rate equations for single

Step reaction

معادلة السرعة لخطوة واحدة

Reaction mechanisms

Rate equations and temperature

Chemical Kinetics – area of chemistry concerned with rates of reaction .

Factors that affect rates

Concentrations of reactants

التركيز

temperature

Surface area

Solid reactant

liquid reactant

* reaction rate – change in number of moles of a reactant or product per unit time

$$\mathbf{A} \rightarrow \mathbf{B}$$

Rate =
$$\Delta$$
 (moles B)
 Δt

Progress of reaction

(a)

(b)

Fig 1 – plots of moles vs Time

R = Δ (moles **B**) / Δ t = - Δ (moles **A**) / Δ t

Rate of appearance of products (B) is positive

Rate of disappearance of reaction (A) is negative

Rate using concentrations

Reaction rate – change in concentrations of reactant or product per unit time.

$$A_2 + B_2 \rightarrow 2AB$$

For reaction

Rate of disappearance of $A_2 = -\Delta [A_2] / \Delta t$

Rate of disappearance of $\mathbf{B}_2 = -\Delta[\mathbf{B}_2] / \Delta t$

Also can be expressed of formation of products:

Rate of appearance of AB = \Delta[AB] / \Delta t

$$A_2 + B_2 \rightarrow 2AB$$

AB is produced as twice as fast of A₂ or B₂

Therefore the relationships between the rates of change for various species are:

$$\Delta [\mathbf{A}_2] = \Delta [\mathbf{B}_2] = \Delta [\mathbf{A}\mathbf{B}] / 2$$

$\mathbf{R} = -\Delta[\mathbf{A}_2] / \Delta t = -\Delta[\mathbf{B}_2] / \Delta t = \frac{1}{2} \Delta[\mathbf{A}\mathbf{B}] / \Delta t$

Units of Rate = mole / L.s

Relative rates

$$2\mathrm{HI} \rightarrow \mathrm{H}_2 + \mathrm{I}_2$$

The rate of decomposition of HI is twice as fast as the rate of production of $\rm H_2$.

The rate of decomposition of HI is twice as fast as the rate of production of \mathbf{I}_2

The rate of production of H2 is half as fast as the rate of decomposition of HI.

$\mathbf{R} = -\frac{1}{2} \Delta [\mathbf{H}\mathbf{I}] / \Delta \mathbf{t} = \Delta [\mathbf{H}_2] / \Delta \mathbf{t} = \Delta [\mathbf{I}_2] \Delta \mathbf{t}$

$$\mathbf{R}_{\text{formation}} [\mathbf{H}_2] \text{ or } [\mathbf{I}_2] = \frac{1}{2} \Delta [\mathbf{HI}] / \Delta t$$

i) How is the rate of disappearance of ozone related to the rate of appearance of oxygen in the following equation?

$$2O_3(g) \rightarrow 3O_2(g)$$

ii) If the rate of appearance of O_2 is 6.0 x 10⁻⁵ M/s, what is the value of the rate of disappearance of O_3 ?

i) $R = \frac{1}{2} \Delta [O_3] / \Delta t = \frac{1}{3} \Delta [O_2] / \Delta t$

ii) $R = \frac{1}{2} \Delta [O_3] / \Delta t = \frac{1}{3} \times 6.0 \times 10^{-5} \text{ M/s}$

$\Delta [O_3] / \Delta t = 2/3 \ge 6.0 \ge 10^{-5}$

$$= 4.0 \times 10^{-5}$$
 M/s

How we calculate rate from [conc] vs time?

	Rate Data for Reaction of C4H9CI with Water	
Time, t (s)	[C4H9Cl] (M)	Average Rate (<i>M</i> /s)
0.0 50.0 100.0 150.0 200.0 300.0 400.0	0.1000 0.0905 0.0820 0.0741 0.0671 0.0549 0.0448	$\begin{array}{rrrr} 1.9 & \times 10^{-4} \\ 1.7 & \times 10^{-4} \\ 1.6 & \times 10^{-4} \\ 1.4 & \times 10^{-4} \\ 1.22 & \times 10^{-4} \\ 1.01 & \times 10^{-4} \\ 0.80 & \times 10^{-4} \end{array}$
500.0 800.0 10,000	0.0368 0.0200 0	0.500×10^{-4} 0.560×10^{-4}

For each chemical reaction there is a mathematical expression , called a rate equation or a rate law ,

Rate law relates the concentrations of reactants to the reaction rate.

$$2N_2 O_5 (g) \rightarrow 4NO_2 (g) + O_2 (g)$$

$$\mathbf{R} = \mathbf{k} [\mathbf{N}_2 \mathbf{O}_5]$$

In general:

$$aA+bB \rightarrow cC + dD$$

 $R = k [A]^m [B]^n$

k = rate constant

m + **n** = reaction order

Reaction order and rate constant

*****Rate = k [reactant 1]^m [reactant 2]ⁿ

Sum of m + n is overall reaction order

Values of m and n must be determined by experiment – cannot be taken from balanced equation

Output to the set of the set o

Why study the rate Law ?

➢It will help us determine possible mechanisms for reaction .

➢It will help us learn how to influence reaction conditions to affect rate . **Driving rate Law**

Drive rate Law and k for

$$CH_3 CHO (g) \rightarrow CH_4 (g) + CO (g)$$

For experimental data for rate of disappearance of CH₃CHO

Exp	[CH3CHO]	R(mol / L .s)
1	0.1	0.02
2	0.2	0.081
3	0.3	0.81
4	0.4	0.318

Drive rate Law and k for

$CH_3 CHO (g) \rightarrow CH_4 (g) + CO (g)$

For experimental data for rate of disappearance of CH₃CHO

Exp	[CH3CHO]	R(mol / L .s)
1	0.1	0.02
2	0.2	0.081
3	0.3	0.81
4	0.4	0.318

solution

Rate = k [
$$CH_3 CHO$$
]ⁿ

$$R_1 = k [0.1]^n = 0.02$$

$$R_2 = k[0.2]^n = 0.081$$

$\mathbf{R}_2 / \mathbf{R}_1 = (\ \mathbf{0.081} / \ \mathbf{0.02}\) = (\mathbf{0.2} / \ \mathbf{0.1}\)^n$

$$=4 = (2)^n$$

$$= 2^2 = (2)^n$$

$\mathbf{R} = \mathbf{k} [\mathbf{CH3CHO}]\mathbf{2}$

$$R_1 = 0.02 = k (0.1)^2$$

$$0.02 = 0.01 \text{ k}$$

k = 0.02 / 0.01 = 2.0 L / mol.s

Order of reaction

$$\mathbf{R} = \mathbf{k} [\mathbf{A}]^{n}$$

n = **0. 1**,**2**, **3** ... or fractions

First order reaction

First order RXN – rate depends on the concentration of a single reactant

 $A \rightarrow products$

$$Ex : CH_3NC \rightarrow CH_3CN$$

$$\mathbf{R} = \mathbf{k} [\mathbf{CH}_3 \mathbf{CHO}]$$

The integrated Rate Law:

1) First order :

Concentration / Time, Relation

$$- d[A] / dt = k [A] \dots (1)$$

Equation (1) can be arranged as

By integration:

$$\int_{[A]_0}^{[A]} d[A]/[A] = k \int_{t_{1=0}}^t dt$$

$$\ln [A]_0 / [A] = kt$$
(3)

If we plot ln[A]₀/ [A] vs. time we get a straight line, with slope equal to k

For a reaction

$$2N_2O_5(s) \rightarrow 4NO_2(g) + O_2(g)$$

Time	[N ₂ O ₅] M	$\ln[N_2O_5]_0$
0	1.0	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

A plot of ln [N₂O₅] vs. time is a straight line

The equation for a straight line is:

$$\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$$

$$\ln [N_2O_5] = kt + \ln [N_2O_5]_0$$

$$Slope = -k$$

 $\ln [N_2O_5]$

Half – life

(First order RXN)

Half – life – time required for a reaction to reach half of its original concentration

 $[A] = \frac{1}{2} [A] 0$

[A]
$$\mathbf{o} / \frac{1}{2}$$
 [A] $\mathbf{o} = \mathbf{k} \mathbf{t}_{1/2}$

$$t_{1/2} = \ln 2 / k = 0.693 / k$$

Half - Life

First order Example

*****For the reaction $aA \rightarrow bB$, a plot of ln [A] vs t was linear and gave a slope of $-6.90 \ge 10^{-2} \le^{-1}$.

Determine rate law , integrated rate law , and value of the rate constant .

Calculate the half-life

How much time is required for this reaction to be 87.5 % complete ?

$$= 6.9 \times 10^{-2} \text{ s}^{-1}$$

iii)
$$t_{1/2} = 0.693 / k$$

$$= 0.693 / 6.9 \times 10^{-3} = 100.4 \text{ s}$$

$$\ln{[A]_0 / [A]} = k t$$

$$[A] = 0.125 [A]_0$$

$$\ln [A]_0 / 0.125 [A]_0 = 6.9 \times 10^{-2} t$$

Second order reactions

Second order RXN – rate depends on the square of the concentration of a single reactant or on the concentration of 2 different reactants.

 $A \rightarrow$ products or $A + B \rightarrow$ products

* $R = k [A]^2$ or R = k [A] [B]

The following reaction is a second order mechanism

 $NO_2 \rightarrow NO + \frac{1}{2}O_2$

$$R = k [NO_2]^2$$

The integrated rate Law

(second order RXN)

$$2A \rightarrow C$$

$$R = -d [A] / dt = k [A]^2$$

$$-\int_{[A]_0}^{[A]} d[A]/[A]^2 = k \int_{t=0}^{t} dt$$

 $1 / [A] = 1 / [A]_0 + k t$

A plot 1 / [A] vs t gives a straight line for second order reaction.

$$t_{1/2} = 1 / k[A]_0$$
, for second order

2nd order Ex:

 $2NO \rightarrow 2NO + O_2$

What is the order of reaction

t(s)	[NO ₂]	[NO ₂]	1/[NO ₂]
0	0.01	-4.61	100
50	0.00787	-4.845	127
100	0.00649	-5.038	208
200	0.00481	-5.337	208
300	0.00380	-5.573	263

i) if you do not know the order , make two plots , one $ln[NO_2]$ vs t second 1 / $[NO_2]$ vs t .

ii) The one it is straight line is the order .

Second order plots

$NO_2 \rightarrow NO + \frac{1}{2}O_2$

□no dependence on concentration !

□often occurs during catalysis.

$$A \rightarrow p$$

$$\mathbf{R} = \mathbf{k} [\mathbf{A}]^{\circ}$$

$$\mathbf{R} = \mathbf{k}$$

$$- d [A] / dt = k$$

$$-\int_{[A]_0}^{[A]} d[A] = k \int_{t=0}^{t} dt$$

$$[A]_0 - [A] = kt$$

$$t_{1/2} = [A]_0 / 2k$$

$$2N_2O(g) \rightarrow 2N_2(g) + O_2(g)$$

The reaction is catalyzed by Pt and only depends on its surface area – only 3 "slots " available pictures above .

Increasing the number of N₂O molecules dose not affect rate

$$[\mathbf{A}]_{t} = -\mathbf{k}t + [\mathbf{A}]_{\circ}$$

***** Characteristics of zero – first , and second – order reaction of the form $A(s) \rightarrow P$.

Order	Rate expression	Conc – time relation	Half life t _{1/2}	Liner plot
0	Rate =k	[A] [A]	[A] ₀ / 2k	[A] vs.t
1	Rate = k[A]	Ln[A]。/[A]=kt	0.693/ k	ln[A] vs.t
2	Rate =k[A] ²	1/[A] – 1/[A] °=kt	1/ k[A] _{0°}	1/[A] vs.t

A Model for chemical Kinetic

*****RXNs speed up when T is increased .

Molecules must collide to react

collisions must have sufficient energy.

During collisions, molecules must have correct orientations.

Rate vs temp

RXNs speed up when T is increased

Distribution of Kinetic Energies

Kinetic energy

Collisions Must Have sufficient Energy

 $A_2 + B_2 \rightarrow 2AB$

*****Molecules must collide to react .

More collisions per unit time should lead to faster reaction

Colliding molecules must have a minimum amount of kinetic energy for a collision result in products (otherwise they just bounce off each other). *Minimum collision energy needed is called the activation energy , E_a .

Raising the temperature of a reaction raises the kinetic energy of the reactants and increases the number of collisions per unit time.

Raising the temperature should lead to faster reactions.

*At some point , when two molecules collide and react , there is a highest energy state called the transition state This barrier is the activation for the reaction to occur .

Collision orientations

$CI + CINO \rightarrow CI_2 + NO$

Collision

(a) Effective collision

Before collision

Collision

After Collision

(a) Ineffective collision

Activation Energy, Ea

E_a = minimum energy required to initiate a chemical reaction

طاقه محددة

Transition state Example

Transition state = activated complex

Energy profile

Reaction pathway

Arrhenius Equation

Arrhenius Equation

$$\mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E}\mathbf{a} / \mathbf{R} \mathbf{T}}$$

$$\ln \mathbf{k} = \ln [\mathbf{A}] - \mathbf{E}\mathbf{a} / \mathbf{R}\mathbf{t}$$

It is a linear equation !

Arrhenius plot

$$\ln (k_2/k_1) = Ea / R (T_2 - T_1) / T_2 T_1$$

The activation energy of a certain reaction is 76.7 KJ/mol How many times faster will the reaction occur at 50°C than at 0°C ?

We will use the equation

$$\ln (k_2/k_1) = Ea / R [(T_2 - T_1) / T_2 T_1]$$

$$\ln (k_2 / k_1) = [(76.7 \times 1000) / 8.314] [(323-273)/323 \times 273]$$

Ln
$$(k_2 / k_1) = 5.23$$

$$k_2 / k_1 = 187$$

$$k_2 = 187 k_1$$

Reaction Mechanisms

Reaction mechanism – process by which a reaction occurs

Elementary step – single (step) event in a mechanism

Mechanisms can never be proved .

Molecularity

Molecularity – number of molecules that participate in an elementary step.

*****Unimolecular -1, $A \rightarrow P$, rate = k[A]

*****Bimolecular – 2, $A + A \rightarrow P$, rate = k[A]²

*****Termolecular -3, $A + A + B \rightarrow P$, rate = k[A]³

Multi step Mechanisms

$Ex : NO_2 + CO \rightarrow NO + CO_2$

Proposed mechanism :

1) $NO_2 + NO_2 \xrightarrow{k_1} NO_3 + NO_3$

2)
$$NO_3 + CO \xrightarrow{k_2} NO_2 + CO_2$$

NO₃ is an intermediate

Requirements for a Valid mechanism

Sum of the elementary steps must give the overall balanced equation.

Mechanism must agree with the experimentally determined rate law.

Rate laws of Elementary steps

You can write a rate law directly from the molecularity (stoichiometry) of an elementary step .

From our example :

Rate₁ =
$$k_1[NO_2] [NO_2] = k_1[NO_2]^2$$

$$Rate_2 = k_2[NO_3] [CO]$$

Rate – Determining step

1)
$$NO_2 + NO_2 \xrightarrow{k_1} NO_3 + NO$$
 slow
2) $NO_3 + CO \xrightarrow{k_2} NO_2 + CO_2$ fast

Rate₁ =
$$k_1 [NO_2]^2$$

Experiment rate law

$$Rate_{RXN} = k_{RXN} [NO_2]^2$$

***Question : what does a rate law tell us ?**

Answer : it gives us information about the elementary steps involved in a reaction

Toll Booth Analogy

1st case : #1 is slow step Rate depends on #1.

2nd case : #2 is slow step Rate depends on #2

Reactions can work the same way.

Is it a valid Mechanism ?

$NO_2 + NO_2 + NO_3 + CO \rightarrow NO_3 + NO + NO_2 + CO_2$

$$NO_2 + CO \rightarrow NO + CO_2$$

Rate
$$_{\text{RXN}} = k_{\text{RXN}} [\text{NO}_2]^2$$

Experimental rate law = $k[NO_2]^2$

Mechanism with an initial slow step :

$$2NO + F_2 \longrightarrow 2ONF R = k[NO][F_2]$$

The suggested mechanism corresponding to bimolecular rate equations is :

1) NO + F₂
$$\xrightarrow{k_1}$$
 ONF + F, R₁ = k₁ [NO] [F₂] slow
2) NO + F $\xrightarrow{k_2}$ ONF, R₂ = k₂ [NO] [F] fast

Mechanism with a final slow step

$$CH_3OH + H^+ + Br \longrightarrow CH_3Br + H_2O$$

Rate =
$$k [CH_3OH] [H^+] [Br]$$

1) From the rate equation , the rate tells us the mechanism should occur in one step .

2) But this is not easy to 3 molecule to collision in the same time

3) The reaction believed to occur by three steps none of them is three- body collision .

4) The 3ed step is the slowest one .

i)
$$CH_3OH + H^+ \longrightarrow CH_3OH_2$$
, $R_1 = k_1[CH_3OH] [H^+]$, fast

ii)
$$CH_3OH_2^+ \xrightarrow{k_2} CH_3OH + H^+ R_2 = k_2[CH_3OH_2^+]$$
, fast

iii)
$$Br^{-} + CH_3 OH_2^+ \xrightarrow{k_3} CH_3 Rr + H_2O$$
, $R_3 = k_3 [Br^{-}] [CH_3 OH_2^+]$, slow

$$\mathbf{R}_3 = \mathbf{R}$$

$$\mathbf{R} = \mathbf{k}_3 \, [\mathbf{Br}] \, [\mathbf{CH}_3 \mathbf{OH}_2^+]$$

*****We have $[CH_3 OH_2^+]$ is the intermediate , we have to eliminate this term from the rate law .

[CH₃ OH⁺₂] can be eliminated by assuming the rate of formation of [CH₃ OH⁺₂] equal the rate of its disappearance

 $k_1 [CH_3 OH][H^+] = k_2 [CH_3 OH^+_2] + k_3 [CH_3 OH^+_2] [Br]$ step 2 is two fast than step 3

Then k₂ >>**k**₃

 $k_1 [CH_3OH] [H^+] = k_2 [CH^3OH^+_2]$

 $[CH_{3}OH_{2}^{+}] = k_{1}[CH_{3}OH] [H^{+}] / k_{2}$

Rate =
$$k_3 [Br] R_1 / R_2 [CH_3OH] [H^+]$$

R= k [CH₃OH] [Br⁻] [H⁺]

Where
$$\mathbf{k} = \mathbf{k}_1 \, \mathbf{k}_3 \, / \, \mathbf{k}_2$$

Potential energy diagram for three steps mechanism 3ed step is rate determining.

Reaction coordinate

$$H_2 + Br_2 \xrightarrow{200^0 C} 2H Br$$

*****This reaction is occurs according to chain mechanism reaction :

1) $Br_2 \rightarrow 2Br$,	chain initiation
Star Strate Star	Son and the son all a
2) $Br + H_2 \rightarrow H Br +$	H chains
$\mathbf{H} + \mathbf{Br}_2 \rightarrow \mathbf{H} \ \mathbf{Br} + \mathbf{I}$	Br propagate
$Br + H_2 \rightarrow H Br + I$	H
America Statements	Subscription Subscription
3) Br + Br \rightarrow Br	chains

$H + H \rightarrow H_2$	terminate
$\mathbf{H} + \mathbf{H} \rightarrow \mathbf{H}_2$	terminate

Catalyst – substance that increases the rate of a reaction without undergoing permanent chemical change itself.

A catalyst lowers the activation energy for the reaction.

Usually, by providing a completely different mechanism.

Catalysis energy profile

Reaction pathway

Types of Catalysis

Homogeneous – catalyst and reacting molecules are in the same phase.

Heterogeneous – catalyst and reacting molecules are in different phases.

Heterogonous catalyst

1) $N_2O(g) \rightarrow N_2O(on Au)$

2)
$$N_2O(on Au) \rightarrow N_2(g) + O on(Au)$$

3) O (on Au) + O (on Au) \rightarrow O₂

 $\mathbf{R} = \mathbf{k} \left[\mathbf{N}_2 \mathbf{O} \right]_0 = \mathbf{k}$

$2N_2 O(s) \rightarrow 2N_2 (g) + O_2 (g)$, Ea =245 KJ, No catalyst

$$2N_2O(s) + \underbrace{Cl_2}{\longrightarrow} 2N_2(g) + O_2(g) + CL_2$$
, Ea = 140 KJ,
homogeneous catalyst.

$$2N_2 O \xrightarrow{Au} 2N_2 (g) + O_2 (g)$$
, Ea =120 KJ,
heterogeneous.