

Bes

Chemical kinetics

الكيمياء الحركية

Reaction rates

 مـدل سرعة التفاعل
Concentration and reaction rates

العلاقة بين تركيز المواد وسرعة التفاعل

Rate equations for single
التفاعل لخطوة واحدة

Step reaction

معادلة السر عة لخطوة واحدة

Reaction mechanisms

ميكانيكية التفاعل

Rate equations and temperature

|تأثير درجة الحرارة على سرعة التفاعل

catalysis

المحفزات

Chemical Kinetics

Chemical Kinetics - area of chemistry concerned with rates of reaction .

(الكيمياء الحركية - هو الفرع من الكيمياء الذي يهتم بسرعة التفاعلات

Factors that affect rates

العوامل التي تؤثرُ على سرعة التفاعلات

Concentrations of reactants

temperature

درجة الحرارة

Catalyst(s)

Surface area

Solid reactant

التفاعلات الصلبة

liquid reactant

التفاعلات السائلّة
catalysts
المحفزات

Reaction Rates

* reaction rate - change in number of moles of a reactant or product per unit time

```
A B B
```


Rate $=\underline{\Delta(\text { moles B) }}$

$$
A \rightarrow B
$$

Fig 1 - plots of moles vs Time


```
R=\Delta(moles B) / \Deltat=-\Delta(moles A )/\Deltat
```

Rate of appearance of products (B) is positive

Rate of disappearance of reaction (A) is negative

Rate using concentrations

Reaction rate - change in concentrations of reactant or product per unit time.

For reaction

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}
$$

Rate of disappearance of $A_{2}=-\Delta\left[A_{2}\right] / \Delta t$

Rate of disappearance of $B_{2}=-\Delta\left[B_{2}\right] / \Delta t$

Also can be expressed of formation of products:

Rate of appearance of $\mathbf{A B}=\Delta[\mathbf{A B}] / \Delta t$

Relative rate

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}
$$

$A B$ is produced as twice as fast of A_{2} or B_{2}

Therefore the relationships between the rates of change for various species are:

$$
\Delta\left[\mathrm{A}_{2}\right]=\Delta\left[\mathrm{B}_{2}\right]=\Delta[\mathrm{AB}] / 2
$$

$$
\mathbf{R}=-\Delta\left[\mathbf{A}_{2}\right] / \Delta \mathbf{t}=-\Delta\left[\mathbf{B}_{2}\right] / \Delta \mathbf{t}=1 / 2 \Delta[\mathrm{AB}] / \Delta \mathbf{t}
$$

Units of Rate $=$ mole $/ \mathbf{L}$. s

Relative rates

Ex:

$$
2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}
$$

> The rate of decomposition of HI is twice as fast as the rate of production of $\mathbf{H}_{\mathbf{2}}$.

The rate of decomposition of HI is twice as fast as the rate of production of $\mathbf{I}_{\mathbf{2}}$

The rate of production of $\mathrm{H} \mathbf{2}$ is half as fast as the rate of decomposition of HI .
$R=-1 / 2 \Delta[H I] / \Delta t=\Delta\left[H_{2}\right] / \Delta t=\Delta\left[\mathbf{I}_{2}\right] \Delta t$
$\mathbf{R}_{\text {formation }}\left[\mathbf{H}_{2}\right]$ or $\left[\mathbf{I}_{2}\right]=1 / 2 \Delta[\mathrm{HI}] / \Delta t$

Ex.

i) How is the rate of disappearance of ozone related to the rate of appearance of oxygen in the following equation?

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})
$$

ii) If the rate of appearance of O_{2} is $6.0 \times 10^{-5} \mathrm{M} / \mathrm{s}$, what is the value of the rate of disappearance of O_{3} ?

Solution

i) $\mathrm{R}=1 / 2 \Delta\left[\mathrm{O}_{3}\right] / \Delta \mathrm{t}=1 / 3 \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
ii) $\mathrm{R}=1 / 2 \Delta\left[\mathrm{O}_{3}\right] / \Delta \mathrm{t}=1 / 3 \times 6.0 \times 10^{-5} \mathrm{M} / \mathrm{s}$
$\Delta\left[\mathrm{O}_{3}\right] / \Delta \mathrm{t}=2 / 3 \times 6.0 \times 10^{-5}$

$$
=4.0 \times 10^{-5} \mathrm{M} / \mathrm{s}
$$

How we calculate rate from [conc] vs time?

Rate Data for Reaction of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ with Water

Time, $t(\mathbf{s})$	$\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right](\boldsymbol{M})$	Average Rate (M / \mathbf{s})
0.0	0.1000	1.9×10^{-4}
50.0	0.0905	1.7×10^{-4}
100.0	0.0820	1.6×10^{-4}
150.0	0.0741	1.4×10^{-4}
200.0	0.0671	1.22×10^{-4}
300.0	0.0549	1.01×10^{-4}
400.0	0.0448	0.80×10^{-4}
500.0	0.0368	0.560×10^{-4}
800.0	0.0200	
10,000	0	

rate at a particular time - use tangent

For each chemical reaction there is a mathematical expression , called a rate equation or a rate law,

Rate law relates the concentrations of reactants to the reaction rate.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathbf{R}=\mathrm{k}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

In general:

$$
a A+b B \rightarrow c C+d D
$$

$$
\mathbf{R}=\mathrm{k}[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}}
$$

Where

$\mathrm{k}=$ rate constant
$\mathbf{m}+\mathbf{n}=$ reaction order

Reaction order and rate constant

\therefore Rate $=k[\text { reactant } 1]^{m}[\text { reactant } 2]^{\text {n }}$

Sum of $\mathbf{m}+\mathbf{n}$ is overall reaction order

- Values of m and n must be determined by experiment - cannot be taken from balanced equation
\propto Units of the rate constant will vary , depending on the overall reaction order !

Why study the rate Law ?

$>$ It will help us determine possible mechanisms for reaction.
$>$ It will help us learn how to influence reaction conditions to affect rate.

Driving rate Law

Ex:

Drive rate Law and k for

$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

For experimental data for rate of disappearance of $\mathrm{CH}_{3} \mathbf{C H O}$

$\left.\begin{array}{|c|c|c|}\hline \text { Exp } & {[\mathrm{CH} 3 \mathrm{CHO}]} & \mathrm{R}(\mathrm{mol} / \mathrm{L} . \mathrm{s} \\)\end{array}\right]$

Ex:

Drive rate Law and k for

$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

For experimental data for rate of disappearance of $\mathbf{C H}_{3} \mathbf{C H O}$

Exp	$[\mathrm{CH} 3 \mathrm{CHO}]$	$\mathrm{R}(\mathrm{mol} / \mathrm{L} . \mathrm{s}$ $)$
1	0.1	0.02
2	0.2	0.081
3	0.3	0.81
4	0.4	0.318

Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\mathrm{n}}$

$$
R_{1}=k[0.1]^{n}=0.02
$$

$\mathrm{R}_{\mathbf{2}}=\mathrm{k}[0.2]^{\mathrm{n}}=0.081$

$$
R_{2} / R_{1}=(0.081 / 0.02)=(0.2 / 0.1)^{n}
$$

$$
=4=(2)^{n}
$$

$$
=2^{2}=(2)^{n}
$$

$$
\mathrm{n}=\mathbf{2}
$$

$\mathbf{R}=\mathbf{k}[\mathrm{CH} 3 \mathrm{CHO}] 2$

$$
R_{1}=0.02=k(0.1)^{2}
$$

$0.02=0.01 \mathrm{k}$

$$
k=0.02 / 0.01=2.0 \mathrm{~L} / \mathrm{mol} . \mathrm{s}
$$

Order of reaction

$R=k[A]^{n}$

$$
\mathrm{n}=0.1,2,3 \ldots \text { or fractions }
$$

First order reaction

First order RXN - rate depends on the concentration of a single reactant

A \rightarrow products

$$
\mathbf{R}=\mathrm{k}[\mathrm{~A}]
$$

$$
\mathrm{Ex}: \mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}
$$

$\mathrm{R}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$

The integrated Rate Law:

1) First order :

Concentration / Time, Relation

$$
-\mathbf{d}[\mathbf{A}] / \mathrm{dt}=\mathrm{k}[\mathrm{~A}] \ldots \ldots \ldots . \text { (1) }
$$

Equation (1) can be arranged as
-d $[A] /[A]=k$ dt

By integration:

$$
\int_{[A]_{0}}^{[A]} d[A] /[A]=k \int_{t_{1=0}}^{t} d t
$$

$\ln [A]_{0} /[A]=k t \quad \ldots \ldots \ldots \ldots \ldots .$. (3)

If we plot $\ln [\mathrm{A}]_{0} /[\mathrm{A}]$ vs. time we get a straight line, with slope equal to k

For a reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Time	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{M}$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$
0	1.0	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

A plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ vs. time is a straight line
The equation for a straight line is:

$$
y=a x+b
$$

$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{kt}+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$

Slope $=-k$

time

Half - life (First order RXN)

Half - life - time required for a reaction to reach half of its original concentration

$$
[\mathbf{A}]=1 / 2[\mathbf{A}] 0
$$

$$
[\mathrm{A}] 0 / 1 / 2[\mathrm{~A}] 0=\mathrm{k} \mathrm{t}_{1 / 2}
$$

$$
t_{1 / 2}=\ln 2 / k=0.693 / k
$$

Half - Life

First order Example

\approx For the reaction $\mathbf{a A} \rightarrow \boldsymbol{b B}$, a plot of $\ln [\mathrm{A}]$ vs t was linear and gave a slope of $-6.90 \times 10^{-2} \mathrm{~s}^{-1}$.
*Determine rate law , integrated rate law , and value of the rate constant .

Calculate the half-life

How much time is required for this reaction to be 87.5 \% complete ?

Solution:

i) $\mathbf{R}=\mathbf{k}[\mathrm{A}]$

ii) $k=-$ slope

$$
=6.9 \times 10^{-2} \mathrm{~s}^{-1}
$$

iii) $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$

$$
=0.693 / 6.9 \times 10^{-3}=100.4 \mathrm{~s}
$$

$\ln \left\{[A]_{0} /[A]\right\}=\mathbf{k} t$

$[\mathrm{A}]=0.125[\mathrm{~A}]_{0}$
$\ln [A]_{0} / 0.125[A]_{0}=6.9 \times 10^{-2} t$

$$
\mathrm{t}=30.1 \mathrm{~s}
$$

Second order reactions

> Second order RXN - rate depends on the square of the concentration of a single reactant or on the concentration of 2 different reactants.

A \rightarrow products or $\mathrm{A}+\mathrm{B} \rightarrow$ products

```
R=k[A]
```


Ex:

The following reaction is a second order mechanism
$\mathrm{NO}_{2} \rightarrow \mathrm{NO}+1 / 2 \mathrm{O}_{\mathbf{2}}$
$\mathrm{R}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$

The integrated rate Law (second order RXN)

$$
2 \mathrm{~A} \rightarrow \mathrm{C}
$$

$$
\mathrm{R}=-\mathrm{d}[\mathrm{~A}] / \mathrm{dt}=\mathrm{k}[\mathrm{~A}]^{2}
$$

$$
-\int_{[A]_{0}}^{[A]} d[A] /[A]^{2}=k \int_{t=0}^{t} d t
$$

$1 /[\mathrm{A}]=1 /[\mathrm{A}]_{0}+\mathrm{kt}$
*A plot $1 /[\mathrm{A}]$ vs t gives a straight line for second order reaction.

$$
\mathbf{t}_{1 / 2}=1 / \mathrm{k}[\mathrm{~A}]_{0}, \quad \text { for second order }
$$

2nd order Ex:

$2 \mathrm{NO} \rightarrow \mathbf{2 N O}+\mathrm{O}_{2}$

What is the order of reaction

$t(s)$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{NO}_{2}\right]$	$1 /\left[\mathrm{NO}_{2}\right]$
0	0.01	-4.61	100
50	0.00787	-4.845	127
100	0.00649	-5.038	208
200	0.00481	-5.337	208
300	0.00380	-5.573	263

solution

i) if you do not know the order, make two plots , one $\ln \left[\mathrm{NO}_{2}\right]$ vs t second $1 /\left[\mathrm{NO}_{2}\right]$ vs t.
ii) The one it is straight line is the order .

Second order plots

Zero order reaction

Dno dependence on concentration!

Doften occurs during catalysis.

$$
\mathrm{A} \rightarrow \mathbf{p}
$$

$$
\mathbf{R}=\mathbf{k}[\mathbf{A}]^{\circ}
$$

$$
\mathbf{R}=\mathbf{k}
$$

$-\mathrm{d}[\mathrm{A}] / \mathrm{dt}=\mathrm{k}$

$$
[\mathbf{A}]_{0}-[\mathbf{A}]=\mathbf{k t}
$$

$$
\mathrm{t}_{1 / 2}=[\mathrm{A}]_{0} / 2 \mathbf{k}
$$

Zero - order Example

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The reaction is catalyzed by Pt and only depends on its surface area only 3 "slots " available pictures above .

Increasing the number of $\mathrm{N}_{2} \mathrm{O}$ molecules dose not affect rate

Zero - order plot

$$
[\mathbf{A}]_{t}=-k t+[A]_{0}
$$

Characteristics of zero - first , and second order reaction of the form $A(s) \rightarrow P$.

Order	Rate expression	Conc - time relation	Half life $\mathbf{t}_{1 / 2}$	Liner plot
$\mathbf{0}$	Rate $=\mathbf{k}$	$[\mathbf{A}]_{0}-[\mathbf{A}]$	$[\mathbf{A}]_{0} / \mathbf{2 k}$	$[\mathbf{A}]$ vs.t
$\mathbf{1}$	Rate $=\mathbf{k}[\mathbf{A}]$	$\mathbf{L n}[\mathbf{A}]_{0} /[\mathbf{A}]=\mathbf{k t}$	$\mathbf{0 . 6 9 3 / k}$	$\ln [\mathbf{A}]$ vs.t
$\mathbf{2}$	Rate $=\mathbf{k}[\mathbf{A}]^{2}$	$\mathbf{1} /[\mathbf{A}]-\mathbf{1} /[\mathbf{A}]$ $0=k t$	$\mathbf{1 / k}[\mathbf{A}]_{0^{\circ}}$	$\mathbf{1 / [A]}$ vs.t

A Model for chemical Kinetic

RXNs speed up when T is increased .
*Molecules must collide to react
collisions must have sufficient energy .

During collisions, molecules must have correct orientations .

Rate vs temp

RXNs speed up when T is increased

Distribution of Kinetic Energies

Kinetic energy

Collisions Must Have sufficient Energy

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}
$$

Collision Theory

*Molecules must collide to react .

More collisions per unit time should lead to faster reaction

Colliding molecules must have a minimum amount of kinetic energy for a collision result in products (otherwise they just bounce off each other) .
*Minimum collision energy needed is called the activation energy, E_{a}.
$\%$ Raising the temperature of a reaction raises the kinetic energy of the reactants and increases the number of collisions per unit time.

Raising the temperature should lead to faster reactions.
\&At some point, when two molecules collide and react , there is a highest energy state called the transition state This barrier is the activation for the reaction to occur.

Collision orientations

$\mathrm{CI}+\mathrm{CINO} \rightarrow \mathrm{CI}_{2}+\mathrm{NO}$

(a) Elfective colliston:

Activation Energy, Ea

$E_{a}=$ minimum energy required to initiate a chemical reaction

>" threshold energy "

طاقه محددة

>" energy hill "

Transition state Example

Transition state $=$ activated complex

Energy profile

Reaction pathway

Arrhenius Equation

Rate constant

Temperature

Gas constant (8.314 J K-1mol-1

Arrhenius Equation

$$
k=A e^{-E a / R T}
$$

$\ln k=\ln [A]-\mathbf{E a} / \mathbf{R t}$

It is a linear equation !

Arrhenius plot

2-Arrhenius Equation

$$
\ln \left(k_{2} / k_{1}\right)=E a / R\left(T_{2}-T_{1}\right) / T_{2} T_{1}
$$

Ex:

*The activation energy of a certain reaction is $76.7 \mathrm{KJ} / \mathrm{mol}$ How many times faster will the reaction occur at $50^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$?

Solution

We will use the equation

$$
\ln \left(k_{2} / k_{1}\right)=\mathrm{Ea} / \mathrm{R}\left[\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) / \mathrm{T}_{2} \mathrm{~T}_{1}\right]
$$

$\ln \left(k_{2} / k_{1}\right)=[(76.7 \times 1000) / 8.314][(323-273) / 323 \times 273]$

$\operatorname{Ln}\left(k_{2} / k_{1}\right)=5.23$

$$
\mathbf{k}_{2} / \mathbf{k}_{1}=187
$$

$\mathrm{k}_{2}=187 \mathrm{k}_{1}$

Reaction Mechanisms

Reaction mechanism - process by which a reaction occurs

> Elementary step - single (step) event in a mechanism

> Mechanisms can never be proved .

Molecularity

Molecularity - number of molecules that participate in an elementary step .

$$
\text { Unimolecular }-1, \quad \mathrm{~A} \rightarrow \mathrm{P}, \text { rate }=\mathrm{k}[\mathrm{~A}]
$$

Bimolecular -2 , $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{P}$, rate $=\mathrm{k}[\mathrm{A}]^{2}$

$$
\text { Termolecular }-3, \quad \mathrm{~A}+\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}, \text { rate }=\mathrm{k}[\mathrm{~A}]^{3}
$$

Multi step Mechanisms

$\mathrm{Ex}: \mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$

Proposed mechanism :

1) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \xrightarrow{k_{1}} \mathrm{NO}_{3}+\mathrm{NO}$ 2) $\mathrm{NO}_{3}+\mathrm{CO} \xrightarrow{k_{2}} \mathrm{NO}_{2}+\mathrm{CO}_{2}$
NO_{3} is an intermediate

Requirements for a Valid mechanism

Sum of the elementary steps must give the overall balanced equation .

Mechanism must agree with the experimentally determined rate law .

Rate laws of Elementary steps

- You can write a rate law directly from the molecularity (stoichiometry) of an elementary step .

From our example :

$$
\operatorname{Rate}_{1}=k_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{2}\right]=k_{1}\left[\mathrm{NO}_{2}\right]^{2}
$$

$$
\text { Rate }_{2}=k_{2}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]
$$

Rate - Determining step

Rate - determining step = slow step

Our example again :

1) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \xrightarrow{k_{1}} \mathrm{NO}_{3}+\mathrm{NO}$ slow
2) $\mathrm{NO}_{3}+\mathrm{CO} \xrightarrow{k_{2}} \mathrm{NO}_{2}+\mathrm{CO}_{2}$ fast

$$
\operatorname{Rate}_{1}=k_{1}\left[\mathrm{NO}_{2}\right]^{2}
$$

Experiment rate law

$$
\text { Rate }_{\mathrm{RXN}}=k_{\mathrm{RXN}}\left[\mathrm{NO}_{2}\right]^{2}
$$

\& Question : what does a rate law tell us?

Answer : it gives us information about the elementary steps involved in a reaction

1st case : \#1 is slow step Rate depends on \#1.

2nd case : \#2 is slow step Rate depends on \#2

Reactions can work the same way .

Is it a valid Mechanism?

$\mathrm{NO}_{2}+\mathrm{NO}_{2}+\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2}$
$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$

Rate $_{\text {RXN }}=k_{\text {RXN }}\left[\mathrm{NO}_{2}\right]^{2}$

Experimental rate law $=\boldsymbol{k}\left[\mathrm{NO}_{2}\right]^{\mathbf{2}}$

Mechanism with an initial slow step :

$2 \mathrm{NO}+\mathrm{F}_{2} \longrightarrow \mathrm{ONF} \quad \mathrm{R}=\mathrm{k}[\mathrm{NO}]\left[\mathrm{F}_{2}\right]$

*The suggested mechanism corresponding to bimolecular rate equations is :

slow
$\xrightarrow{\text { 2) } \mathrm{N} 0+\mathrm{F} \xrightarrow{k_{2}} \text { 0NF, } \quad \mathrm{R}_{2}=\mathrm{k}_{2}[\mathrm{~N} 0][\mathrm{F}]}$
fast

```
Rate = rate of slowest step
```

$$
\mathrm{R}_{1}=\mathrm{R}
$$

$\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{F}_{2}\right]=\mathrm{k}[\mathrm{NO}]\left[\mathrm{F}_{2}\right]$

Where $\mathrm{k}_{1}=\mathrm{k}$
Energy profile

Mechanism with a final slow step

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}-\stackrel{k}{\longrightarrow} \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}
$$

```
Rate = k [CH3OH ][H+}][\textrm{Br}
```

1) From the rate equation, the rate tells us the mechanism should occur in one step.
2) But this is not easy to $\mathbf{3}$ molecule to collision in the same time
3) The reaction believed to occur by three steps none of them is three- body collision .

4) The 3ed step is the slowest one .

$$
\text { i) } \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} \xrightarrow{k_{1}} \mathrm{CH}_{3} \mathrm{OH}_{2}, \mathrm{R}_{1}=\mathrm{k}_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right] \text {, fast }
$$

$$
\text { ii) } \mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \xrightarrow{k_{2}} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} \quad \mathrm{R}_{2}=\mathrm{k}_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right] \text {, fast }
$$

iii) $\mathrm{Br}+\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \xrightarrow{k_{3}} \mathrm{CH}_{3} \mathrm{Rr}+\mathrm{H}_{2} \mathrm{O}, \quad \mathrm{R}_{3}=\mathrm{k}_{3}\left[\mathrm{Br}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]$, slow

$$
\mathbf{R}_{3}=\mathbf{R}
$$

$$
\mathrm{R}=\mathrm{k}_{3}\left[\mathrm{Br}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{OH}^{+}{ }_{2}\right]
$$

We have $\left[\mathrm{CH}_{3} \mathrm{OH}_{2}\right.$] is the intermediate, we have to eliminate this term from the rate law.
$\left[\mathrm{CH}_{3} \mathrm{OH}_{2}\right.$] can be eliminated by assuming the rate of formation of $\left[\mathrm{CH}_{3} \mathrm{OH}^{+}{ }_{2}\right.$] equal the rate of its disappearance
$\mathrm{k}_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]=\mathrm{k}_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}\right]+\mathrm{k}_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}{ }_{2}\right][\mathrm{Br}]$ step 2 is two fast than step 3

Then $k_{2} \gg k_{3}$
$\mathbf{k}_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]=\mathrm{k}_{2}\left[\mathrm{CH}^{3} \mathrm{OH}^{+}{ }_{2}\right]$
$\left[\mathrm{CH}_{3} \mathrm{OH}^{+}{ }_{2}\right]=\mathrm{k}_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right] / \mathrm{k}_{2}$

$\%$ By replace $\left[\mathrm{CH}_{3} \mathrm{OH}^{+}\right.$2 $]$in rate equal we get

$$
\text { Rate }=\mathrm{k}_{3}\left[\mathrm{Br}^{-}\right] \mathrm{R}_{1} / \mathrm{R}_{2}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]
$$

$$
=\mathrm{k}_{3} \mathrm{k}_{1} / \mathrm{K}_{2}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]
$$

$\mathrm{R}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{OH}\right][\mathrm{Br}]\left[\mathrm{H}^{+}\right]$

Where $k=k_{1} k_{3} / k_{2}$

Potential energy diagram for three steps mechanism 3ed step is rate determining.

Reaction coordinate

Chain mechanism

$$
\mathbf{H}_{2}+\mathrm{Br}_{2} \xrightarrow{200^{\circ} \mathrm{C}} \mathbf{2 H ~ B r}
$$

*This reaction is occurs according to chain mechanism reaction :

1) $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}, \quad$ chain initiation
2) $\mathrm{Br}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}$ chains
$\mathbf{H}+\mathrm{Br}_{2} \rightarrow \mathbf{H B r}+\mathbf{B r} \quad$ propagate
$\mathrm{Br}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}$

3) $\mathrm{Br}+\mathrm{Br} \rightarrow \mathrm{Br}_{2}$	chains
$\mathbf{H}+\mathbf{H} \rightarrow \mathbf{H}_{2}$	terminate

Catalysis

Catalyst - substance that increases the rate of a reaction without undergoing permanent chemical change itself .

A catalyst lowers the activation energy for the reaction.

Usually , by providing a completely different mechanism .

Catalysis energy profile

Reaction pathway

Types of Catalysis

Homogeneous - catalyst and reacting molecules are in the same phase .

Heterogeneous - catalyst and reacting molecules are in different phases .

Heterogonous catalyst

$$
\mathbf{N}_{2} \mathbf{O}(\underline{\mathbf{g}}) \xrightarrow{A u} \mathbf{N}_{2}(\underline{\mathbf{g}})+\mathbf{O}_{2}(\underline{\mathbf{g}})
$$

$$
\text { 1) } \mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\text { on } \mathrm{Au})
$$

$$
\text { 2) } \left.\mathrm{N}_{2} \mathrm{O}(\mathrm{on} \mathrm{Au}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O} \text { on(} \mathrm{Au}\right)
$$

$$
\text { 3) } \mathrm{O}(\mathrm{on} \mathrm{Au})+\mathrm{O}(\mathrm{on} \mathrm{Au}) \rightarrow \mathrm{O}_{2}
$$

$$
\mathrm{R}=\mathrm{k}\left[\mathrm{~N}_{2} \mathrm{O}\right]_{0}=\mathrm{k}
$$

$\mathbf{2} \mathbf{N}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathbf{2} \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \quad \mathrm{Ea}=\mathbf{2 4 5} \mathrm{KJ}, \quad$ No catalyst

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~s})+\xrightarrow{\mathrm{Cl}_{2}} \mathbf{2 \mathrm { N } _ { 2 }}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{CL}_{2}, \quad \mathrm{Ea}=140 \mathrm{KJ},
$$ homogeneous catalyst

$\mathbf{2} \mathrm{N}_{2} \mathrm{O} \xrightarrow{A u} \mathbf{2 N}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}), \mathbf{E a}=\mathbf{1 2 0} \mathrm{KJ}$, heterogeneous.

